Yoo, S.-H.; Siemer, N.; Todorova, M.; Marx, D.; Neugebauer, J.: Deciphering Charge Transfer and Electronic Polarization Effects at Gold Nanocatalysts on Reduced Titania Support. The Journal of Physical Chemistry C 123 (9), pp. 5495 - 5506 (2019)
Ikeda, Y.; Körmann, F.; Tanaka, I.; Neugebauer, J.: Impact of chemical fluctuations on stacking fault energies of CrCoNi and CrMnFeCoNi high entropy alloys from first principles. Entropy 20 (9), 655 (2018)
Surendralal, S.; Todorova, M.; Finnis, M. W.; Neugebauer, J.: First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. Physical Review Letters 120 (24), 246801 (2018)
Freysoldt, C.; Neugebauer, J.: First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Physical Review B 97 (20), 205425 (2018)
Hickel, T.; Neugebauer, J.; McEniry, E.: Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures. Acta Materialia 150, pp. 53 - 58 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.