Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Error-propagation in multiscale approaches to the elasticity of polycrystals. Physica Status Solidi (B) 245, pp. 2636 - 2641 (2008)
Al-Sawalmih, A.; Li, C.; Siegel, S.; Fabritius, H.; Yi, S. B.; Raabe, D.; Fratzl, P.; Paris, O.: Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster. Advanced Functional Materials 18 (20), pp. 3307 - 3314 (2008)
Nikolov, S.; Raabe, D.: Hierarchical Modeling of the Elastistic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization. Biophysical Journal 94, pp. 4220 - 4232 (2008)
Bastos, A.; Zaefferer, S.; Raabe, D.: Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co–Ni films. Journal of Microscopy 230, pp. 487 - 498 (2008)
Cao, Y. P.; Xue, Z. Y.; Chen, X.; Raabe, D.: Correlation between the flow stress and the nominal indentation hardness of soft metals. Scripta Materialia 59, pp. 518 - 521 (2008)
Counts, W. A.; Friak, M.; Battaile, C. C.; Raabe, D.; Neugebauer, J.: A comparison of polycrystalline elastic constants computed by analytic homogenization schemes and FEM. Physica Status Solidi B 245, pp. 2630 - 2635 (2008)
Frommert, M.; Zobrist, C.; Lahn, L.; Böttcher, A.; Raabe, D.; Zaefferer, S.: Texture measurement of grain-oriented electrical steels after secondary recrystallization. Journal of Magnetism and Magnetic Materials 320, pp. e657 - e660 (2008)
Godara, A.; Raabe, D.: Microstrain localisation measurement in epoxy FRCs during plastic deformation using a digital image correlation technique coupled with scanning electron microscopy. Nondestructive Testing and Evaluation 3, pp. 229 - 240 (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Characterization of the microstrcture, crystallographic texture and segregation of an as-cast duplex stainless steel slab. Steel Research International 79 (6), pp. 482 - 488 (2008)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: 3D tomographic EBSD measurements of heavily deformed ultra fine grained Cu-0.17wt%Zr obtained from ECAP. Materials Science Forum 584-586, pp. 434 - 439 (2008)
Kumar, D.; Bieler, T. R.; Eisenlohr, P.; Mason, D. E.; Crimp, M. A.; Roters, F.; Raabe, D.: On Predicting Nucleation of Microcracks Due to Slip-Twin Interactions at Grain Boundaries in Duplex gamma-TiAl. Journal of Engineering and Materials Technology 130 (02), pp. 021012-1 - 021012-12 (2008)
Liu, T.; Raabe, D.; Zaefferer, S.: A 3D tomographic EBSD analysis of a CVD diamond thin film. Science and Technology of Advanced Materials 9, 035013 (2008)
Raabe, D.; Degenhardt, R.; Sellger, R.; Klos, W.; Sachtleber, M.; Ernenputsch, L.: Advances in the optimization of thin strip cast austenitic 304 stainless steel microstructures. Steel Research International 79, pp. 440 - 444 (2008)
Sachs, C.; Fabritius, H.; Raabe, D.: Influence of the microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. Journal of Structural Biology 161, pp. 120 - 132 (2008)
Sander, B.; Raabe, D.: Texture inhomogeneity in a Ti–Nb-based beta-titanium alloy after warm rolling and recrystallization. Materials Science and Engineering A 479, pp. 236 - 247 (2008)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Simulation of earing of a 17% Cr stainless steel considering texture gradients. Materials Science and Engineering A 488, pp. 482 - 490 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.