Neugebauer, J.: Fully ab initio determination of free energies: Basis for high-throughput approaches in materials design. DPG Frühjahrstagung 2013, Regensburg, Germany (2013)
Todorova, M.; Neugebauer, J.: Extending the Concept of Semiconductor Defect Chemistry to Electrochemistry. TMS Annual Meeting, San Antonio, TX, USA (2013)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Planar Defects in Pure Iron. SFB-761 Annual Meeting 2013, Herdecke, Germany (2013)
Bleskov, I.; Körmann, F.; Hickel, T.; Neugebauer, J.: Impact of Magnetism on Thermodynamic Properties of Iron. International Symposium “Frontiers In Electronic Structure Theory And Multi Scale Modeling” (FEST-VEK), Moscow, Russia (2013)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: Defects in amorphous silicon from H insertion. Workshop "Spins as Functional Probes in Solar Energy Research", Berlin, Germany (2013)
Neugebauer, J.: Ab initio guided materials design: Application to doping and growth of group-III nitride. Colloquium, TH Ilmenau, Ilmenau, Germany (2013)
Neugebauer, J.: Modeling steels exhibiting unconventional deformation mechanisms based on ab initio based multiscale simulations. Kolloquium TH Ilmenau, Ilmenau, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.