Zaefferer, S.; Motaman, S. A. H.: Metallic Materials (Microstructure, Microscopy, Modelling). Lecture: SS 2021, RWTH Aachen University, April 12, 2021 - July 23, 2021
Zaefferer, S.: Fundamentals and practical aspects of texture and microstructure measurements using EBSD-based orientation microscopy and related techniques. Lecture: January 2020, IIT Madras, India, 2020-01
Zaefferer, S.: Fundamentals and practical aspects of texture and microstructure measurements using EBSD-based orientation microscopy and related techniques. Lecture: Febuary and March 2020, MPIE Düsseldorf, 2020-01
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…