Li, J.; Pharr, G. M.; Kirchlechner, C.: Quantitative insights into the dislocation source behavior of twin boundaries suggest a new dislocation source mechanism. Journal of Materials Research 36 (10), pp. 2037 - 2046 (2021)
Luo, W.; Kirchlechner, C.; Li, J.; Dehm, G.; Stein, F.: Composition dependence of hardness and elastic modulus of the cubic and hexagonal NbCo2 Laves phase polytypes studied by nanoindentation. Journal of Materials Research 35 (2), pp. 185 - 195 (2020)
Qin, Y.; Li, J.; Herbig, M.: Microstructural origin of the outstanding durability of the high nitrogen bearing steel X30CrMoN15-1. Materials Characterization 159, 110049 (2020)
Li, J.; Dehm, G.; Kirchlechner, C.: Dislocation source activation by nanoindentation in single crystals and at grain boundaries. E-MRS Spring, Strasbourg, France (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Differences in dislocation source activation stress in the grain interior and at twin boundaries using nanoindentation. Nanobruecken 2018, Erlangen, Germany (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Grain Boundaries acting as dislocation sources. Gordon Research Seminar "Thin Film & Small Scale Mechanical Behavior", Lewiston, ME, USA (2018)
Li, J.: Probing dislocation nucleation in grains and at Ʃ3 twin boundaries of Cu alloys by nanoindentation. Dissertation, Ruhr-Universität Bochum (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…