Rabe, M.; Baumgartner, L.-M.; Boyle, A. L.; Erbe, A.: Controlled amphipathic peptide adsorption by smart, electro-responsive germanium interfaces. European Conference on Organized Films (ECOF17), Cordoba, Spain (2022)
Rabe, M.; Baumgartner, L.-M.; Boyle, A. L.; Erbe, A.: Designing smart interfaces based on electro-responsive self-assembled monolayers from coiled-coil peptides. Bunsentagung 2019 - 118th General Assembly of the German Bunsen Society for Physical Chemistry, Jena, Germany (2019)
Rabe, M.; Baumgartner, L.-M.; Boyle, A. L.; Erbe, A.: Employing electro-responsive germanium interfaces to control amphipathic peptide adsorption – an in situ ATR IR study. 6th International Symposium on Surface Imaging/Spectroscopy at the Solid/Liquid Interface, Krakow, Poland (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…