Kenmoe, S.; Biedermann, P. U.: Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles. The Journal of Chemical Physics 148, 054701 (2018)
Kenmoe, S.; Biedermann, P. U.: Water aggregation and dissociation on the ZnO(1010) surface. Physical Chemistry Chemical Physics 19, pp. 1466 - 1486 (2017)
Kenmoe, S.; Biedermann, P. U.: Water adsorption on non polar ZnO surfaces: from single molecules to multilayers. In APS March Meeting 2015, abstract #G8.011. APS March Meeting 2015 , San Antonio, TX, USA, March 02, 2015 - March 06, 2015. (2015)
Kenmoe, S.; Biedermann, P. U.: Water adsorption on non polar ZnO surfaces: from single molecules to multilayers. In DPG Spring Meeting 2015, Abstract: O14.12. DPG Spring Meeting 2015 , Berlin, Germany, March 16, 2015 - March 20, 2015. (2015)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In APS March Meeting 2014, abstract #Q2.009. APS March Meeting 2014 , Denver, CO, USA, March 03, 2014 - March 07, 2014. (2014)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In DPG Spring Meeting 2014, Abstract: O50.6. DPG Spring Meeting 2014 , Dresden, Germany, March 30, 2014 - April 04, 2015. (2014)
Kenmoe, S.: Ab Initio Study of the Low-Index Non-Polar Zinc Oxide Surfaces in Contact with Water: from Single Molecules to Multilayers. Dissertation, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, Bochum, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.