Konrad, J.; Zaefferer, S.; Schneider, A.: Investigation of nucleation mechanisms of recrystallization in warm rolled Fe3Al base alloys. Materials Science Forum 467-470, pp. 75 - 80 (2004)
Zaefferer, S.; Konrad, J.; Raabe, D.: 3D-Orientation Microscopy in a Combined Focused Ion Beam (FIB) - Scanning Electron Microscope: A New Dimension of Microstructure Characterisation. Microscopy Conference 2005, Davos, Switzerland (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Investigation of orientation gradients around particles and their influence on particle stimulated nucleation in a hot rolled Fe3Al based alloy by applying 3D EBSD. DPG Frühjahrstagung, Berlin, Germany (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Investigation of Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. 2nd International Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Konrad, J.: Hot Rolling Behaviour and Plastic Anisotropy of Fe3Al-based Alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Sitzung des DFG Fachausschuss Intermetallische Phasen, MPIE, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.