Zaefferer, S.; Romano, P.: Attempt to identify and quantify microstructural constituents in low-alloyed TRIP steels by simultaneous EBSD and EDS measurements. M&M 2007, Microscopy and Microanalysis 2007 Meeting, Ft. Lauderdale, FL, USA (2007)
Frommert, M.; Dorner, D.; Lahn, L.; Raabe, D.; Zaefferer, S.: 3D Investigation of Early Stages of Recrystallization in Deformed Goss-Oriented Fe3%Si Single Crystals. The Third International Conference on Recrystallization and Grain Growth ReX & GG III, Jeju Island, South Korea (2007)
Zaefferer, S.: Some ideas on the formation mechanisms and intensity of electron backscatter diffraction patterns. 14th Conference on Electron Backscatter Diffraction, New Lanark, Scotland, UK (2007)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3 Dimensional EBSD study of the relationship between triple junctions and columnar grain in electrodeposited materials. Electron Back Scatter Diffraction Meeting 2007, New Lanark, Scotland, UK (2007)
Bastos da Silva, A. F.; Zaefferer, S.; Raabe, D.: Three Dimension Characterization of Electrodeposited Samples. MRS Fall Meeting, Boston, MA, USA (2005)
Dorner, D.; Zaefferer, S.: 3D reconstruction of an abnormally growing Goss grain in Fe3%Si by FIB serial sectioning and EBSD. DPG-Jahrestagung 2005, Berlin, Germany (2005)
Zaafarani, N.; Singh, R.; Zaefferer, S.; Roters, F.; Raabe, D.: 3D experimental investigation and crystal plasticity FEM simulation of the texture and microstructure below a nanoindent in a Cu-single crystal. 6th European Symposium on nano-mechanical Testing (Nanomech 6), Hückelhoven, Germany (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Deformation Behavior of a Fe3Al Alloy During Thermomechanical Treatment. MRS Fall Meeting, Boston, MA, USA (2004)
Thomas, I.; Zaefferer, S.; Friedel, F.; Raabe, D.: Orientation dependent growth behaviour of subgrain structures in IF steel. 2nd International Joint Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE, Düsseldorf, Germany (2004)
Wöllmer, S.; Zaefferer, S.; Göken, M.; Mack, T.; Glatzel, U.: Characterization of phases of aluminized nickel base superalloys. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Zaefferer, S.; Motaman, S. A. H.: Metallic Materials (Microstructure, Microscopy, Modelling). Lecture: SS 2021, RWTH Aachen University, April 12, 2021 - July 23, 2021
Zaefferer, S.: Fundamentals and practical aspects of texture and microstructure measurements using EBSD-based orientation microscopy and related techniques. Lecture: January 2020, IIT Madras, India, 2020-01
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.