Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. Plasticity ’14: The 20th International Symposium on Plasticity & Its Current Applications, Nassau, Bahamas, USA (2014)
Kords, C.; Eisenlohr, P.; Roters, F.: On a proper account of plastic size effects in continuum models including the flux of dislocation density. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in single- crystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. 11th World Congress on Computational Mechanics (WCCM XI) and 5th European Conference on Computational Mechanics (ECCM V)
, Barcelona, Spain (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in singlecrystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. EMMC-14, 14th European Mechanics of Materials Conference
, Gothenburg, Sweden (2014)
Roters, F.; Steinmetz, D.; Wong, S. L.; Raabe, D.: Crystal Plasticity Implementation of an Advanced Constitutive Model Including Twinning for High Manganese Steels. 2nd International Conference High Manganese Steel, HMnS 2014
, Aachen, Germany (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. 17th U.S. National Congress on Theoretical and Applied Mechanics Michigan State University, East Lansing, MI, USA (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Shanthraj, P.; Roters, F.; Eisenlohr, P.; Raabe, D.: Integrated in-situ experiments – full field crystal plasticity simulations to analyze stress – strain partitioning in multi-phase alloys. Nanomechanical Testing in Materials Research and Development IV, Olhão, Algarve, Portugal (2013)
Roters, F.: Modellierung von Verformungsvorgängen auf Basis der Kristallplastizität. Herbstschule des SFB 799 TRIP-Matrix-Composite, Leipzig, Germany (2013)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: Stress-strain partitioning in martensitic-ferritic steels analyzed by integrated full-field crystal plasticity simulations and high resolution in situ experiments. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…