Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Atomic-scale analysis of Cu(In,Ga)Se2 grain boundaries. 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt a. M., Germany (2012)
Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Study of impurities redistribution inside the cigs absorber layer by atom probe tomography. Photovoltaic Technical Conference - Thin Film & Advanced Silicon Solutions 2012 (PVTC 2012), Aix-en-Provence, France (2012)
Cojocaru-Mirédin, O.; Choi, P.; Schwarz, T.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in CIGS thin-films solar cells. DPG-Frühjahrstagung Modern, Atom Probe Tomography, TU Berlin, Germany (2012)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in thin-film solar cells. Seminar Talk at Helmholtz Zentrum Berlin (HZB), Berlin, Germany (2012)
Changizi, R.; Lim, J.; Zhang, S.; Schwarz, T.; Scheu, C.: Characterization of KCa2Nb3O10. IAMNano 2019, International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, Düsseldorf, Germany (2019)
Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Cathodoluminescence and the structural study of Lanthanide-doped oxides. Workshop on Transmission Electron Microscopy (E-MAT), Antwerp, Belgium (2019)
Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Study of the chemical composition and the luminescent spectra of Lanthanide-doped oxides. E-MRS 2019 Spring Meeting, Nice, France (2019)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Characterization of Cu(In,Ga)Se2 grain boundaries using atom probe tomography. 2013 MRS Spring Meeting & Exhibit, San Francisco, CA, USA (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.