Gault, B.: Full determination of 3D atomic position by combining APT & EM. Scientific Directions for Future TEM, Forschungszentrum Jülich, Jülich, Germany (2016)
Gault, B.; Katnagallu, S.: Atom probe microscopy: a new playground for big data analysis? Workshop Big-Data-Driven Materials Science, Ringberg Castle, Rottach, Germany (2016)
Gault, B.; De Geuser, F.: A perspective on the ion projection in field ion & atom probe microscopy. Atom Probe Tomography & Microscopy 2016, Gyeongju, South Korea (2016)
Raabe, D.; Choi, P.-P.; Gault, B.; Ponge, D.; Yao, M.; Herbig, M.: Segregation engineering for self-organized nanostructuring of materials - from atoms to properties? APT&M 2016 - Atom Probe Tomography & Microscopy 2016 (55th IFES) , Gyeongju, South Korea (2016)
Kuzmina, M.; Gault, B.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.: From grains to atoms: ping-pong between experiment and simulation for understanding microstructure mechanisms. Res Metallica Symposium, Department of Materials Engineering, KU Leuven, Leuven, The Netherlands (2016)
Herbig, M.; Ponge, D.; Gault, B.; Borchers, C.; Raabe, D.: Segregation and phase transformation at dislocations during aging in a Fe-9%Mn steel studied by correlative TEM-atom probe tomography. MSE 2014, Darmstadt, Germany (2014)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Conference (GRC) 2024, Corrosion Challenges and Opportunities for the Energy Transition, New London, CT, USA (2024)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Seminar (GRS) 2024, Corrosion Monitoring, Modelling and Mitigation Towards a Sustainable Future, New London, CT, USA (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…