Merzlikin, S. V.; Bashir, A.; Rohwerder, M.: Hydrogen embrittlement and traps structure of advanced high strength sheet steel for automotive applications. ICH2P-2014, International Conference on Hydrogen Production, Fukuoka, Japan. (2014)
Merzlikin, S. V.; Rohwerder, M.: Detection of Local Hydrogen Distribution by SIMS. Possibility of the Electrochemical SIMS Calibration for Quantification of Hydrogen in Metallic Matrix. International Symposium on Metal-Hydrogen Systems 2012 (MH2012) , Kyoto, Japan (2012)
Merzlikin, S. V.: Quantitative photoemission depth profiling - A new approach to the surface analysis of real materials. 5. Materialwissenschaftlicher Tag in RUB, Bochum, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…