Mukhopadhyay, S.; Pandey, P.; Baler, N.; Biswas, K.; Makineni, S. K.; Chattopadhyay, K.: The role of Ti addition on the evolution and stability of γ/γ′ microstructure in a Co–30Ni–10Al–5Mo–2Ta alloy. Acta Materialia 208, 116736 (2021)
He, J.; Wu, X.; Guo, Y.; Makineni, S. K.: On the compositional and structural redistribution during partial recrystallisation: a case of σ-phase precipitation in a Mo-doped NiCoCr medium-entropy alloy. Scripta Materialia 194, 113662 (2021)
He, J.; Cao, L.; Makineni, S. K.; Gault, B.; Eggeler, G. F.: Effect of interface dislocations on mass flow during high temperature and low stress creep of single crystal Ni-base superalloys. Scripta Materialia 191, pp. 23 - 28 (2021)
Im, H. J.; Makineni, S. K.; Oh, C.-S.; Gault, B.; Choi, P.-P.: Elemental Sub-Lattice Occupation and Microstructural Evolution in γ/γ′ Co–12Ti–4Mo–Cr Alloys. Microscopy and Microanalysis; First View, pp. 1 - 5 (2021)
Pandey, P.; Mukhopadhyay, S.; Srivastava, C.; Makineni, S. K.; Chattopadhyay, K.: Development of new γ′-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 790, 139578 (2020)
Baler, N.; Pandey, P.; Palanisamy, D.; Makineni, S. K.; Phanikumar, G.; Chattopadhyay, K.: On the effect of W addition on microstructural evolution and gamma' precipitate coarsening in a Co–30Ni–10Al–5Mo–2Ta–2Ti alloy. Materialia 10, 100632 (2020)
Kumar, A.; Dutta, A.; Makineni, S. K.; Herbig, M.; Petrov, R.; Sietsma, J.: In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 757, pp. 107 - 116 (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…