Cao, Y. P.; Ma, D.; Raabe, D.: The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomaterialia 5 (1), pp. 240 - 248 (2009)
Cao, Y. P.; Xue, Z. Y.; Chen, X.; Raabe, D.: Correlation between the flow stress and the nominal indentation hardness of soft metals. Scripta Materialia 59, pp. 518 - 521 (2008)
Cao, Y. P.: Determination of the creep exponent of a power-law creep solid using indentation tests. Mechanics of Time-Dependent Materials 11, pp. 159 - 173 (2007)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Investigating the Applicability of the Oliver & Pharr Method to the Nano-Mechanical Characterization of Soft Matter. Gerberich Symposium, 1st International Conference from Nanoparticles and Nanomaterials to Nanodevices and Nanosystems, Halkidiki, Greece (2008)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Nanomechanics characterization of softmatter using nanoindentation. 11th GLADD Meeting, TU Gent, Belgium (2008)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Nano-mechanical Characterization of Soft Matter. Materials science Day, Mechanical Engineering Department at Ruhr-University of Bochum, Bochum, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…