Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Electrochemical water based in-situ TEM: case study of platinum based nanoparticles potential- and time-dependent changes. IAM Nano 2015 , Hamburg, Germany (2015)
Malyar, N.; Jaya, B. N.; Dehm, G.; Kirchlechner, C.: Dislocation transmission in bi-crystalline micro pillars studied by in situ SEM and in situ µLaue diffraction. Workshop „Understanding Grain Boundary Migration – Theory Meets Experiment”, Günzburg, Germany (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. 8th International Conference on High Temperature Capillarity (HTC-2015), Bad Herrenalb, Germany (2015)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves Phases. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting phenomena of epitaxial Al thin films on sapphire (α-Al2O3). 2nd International Multidisplinary Microscopy Congress (InterM 2014), Oludeniz, Fethiye, Turkey (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture toughness testing of brittle materials at the micron-scale. Thin Film & Small Scale Mechanical Behavior - Gordon Research Conference, Boston, MA, USA (2014)
Jeon, J. B.; Imrich, P. J.; Dehm, G.: Dislocation network formation in coherent twin boundary in Cu: Atomistic simulations. Schöntal symposium on dislocation-based plasticity, Bad Schöntal, Germany (2014)
Djaziri, S.; Li, Y.; Goto, S.; Kirchlechner, C.; Raabe, D.; Dehm, G.: Microstructural characterization of cold-drawn pearlitic steel wires at the nanometer scale. The Thin Film & Small Scale Mechanical Behavior Gordon Research Conference, Waltham, MA, USA (2014)
Fink, C.; Brinckmann, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. 3rd European Symposium on Friction, Wear and Wear Protection, Karlsruhe, Germany (2014)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Dislocation motion in bi-crystals with a specific grain boundary orientation studied by in situ SEM and in situ µLaue diffraction. Conference: Thin Film & Small Scale Mechanical Behavior Gordon Research , Waltham, MA, USA (2014)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Dislocation motion in bi-crystals with a specific grain boundary orientation studied by in situ SEM and in situ µLaue diffraction. Seminar: Thin Film & Small Scale Mechanical Behavior Gordon Research , Waltham, MA, USA (2014)
Philippi, B.; Kirchlechner, C.; Schießl, A.; Schingale, A.; Dehm, G.: Improving lead-free solders by resolving mechanical properties at the microstructure length scale. Thin Film & Small Scale Mechanical Behavior 2014, Gordon Research Conference, Waltham, MA, USA (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture behavior of gradient PtNiAl bond coats at the micron-scale using in-situ microbeam bend studies. 13th European Nanomechanical User Group Meeting, Oxford, UK (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.; Dehm, G.: Deformation behavior of thin Cu/Cr films on polyimide. Small Scale Plasticity School, Cargèse, Corsica, France (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.; Dehm, G.: Adhesion behavior of Cu–Cr thin films on polyimide substrate. ECI Conference "Nano- and Micro-Mechanical Testing in Materials Research and Development IV", Olhão, Portugal (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…