Dehm, G.: Mechanische Eigenschaften in kleinen Dimensionen. Lecture: Vorlesung (3LP), SS 2015, Ruhr-Universität Bochum, Bochum, Germany, May 18, 2015 - May 22, 2015
Dehm, G.: Mechanische Eigenschaften in kleinen Dimensionen. Lecture: Vorlesung: Mechanische Eigenschaften in kleinen Dimensionen (2SWS), Ruhr-Universität Bochum, Germany, May 06, 2014 - May 14, 2014
Dehm, G.: Mechanische Eigenschaften in kleinen Dimensionen. Lecture: Vorlesung, SS 2013, Ruhr-Universität Bochum, Bochum, Germany, May 06, 2013 - June 24, 2013
Brognara, A.: Design of ZrCu thin film metallic glasses with tailored mechanical properties through control of composition and nanostructure. Dissertation, RUB Bochum, Bochum, Germany (2025)
Hosseinabadi, R.: Dislocation transmission through coherent and incoherent twin boundaries in copper at the micron scale. Dissertation, Ruhr University Bochum (2024)
Patil, P.: Influence of plastic anisotropy on the deformation behaviour of Austenitic stainless-steel during single micro-asperity wear. Dissertation, Ruhr-Uiversität-Bochum (2023)
Rao, J.: Hydrogen effects on the mechanical behaviour of FeCr alloys investigated by in-situ nanoindentation. Dissertation, Ruhr-Universität Bochum (2023)
Jentner, R.: Phase identification and micromechanical characterization of an advanced high-strength low-alloy steel. Dissertation, Ruhr-Universität Bochum (2023)
Ahmad, S.: Fundamental investigation of the atomic structures of [111] tilt grain boundaries, their defects and segregation behaviour in pure and alloyed Al. Dissertation, Ruhr-Universität Bochum (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Materials degradation due to wear and corrosion is a major issue that can lead to efficiency loss or even failure. As wear may accelerate corrosion and corrosion may accelerate wear, this interaction is of increasing interest in the wind, hydroelectric, oil and gas energy domains and in the bio-medical field.
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…