Borodin, S.; Rohwerder, M.: Preparation of model single crystalline aluminium oxide films suitable for scanning tunnelling microscopy. DPG Tagung 2008, 72. Jahrestagung der Deutsche Physikalische Gesellschaft, Berlin, Germany (2008)
Michalik, A.; Rohwerder, M.: Long-range ion transport properties of conducting-polymers. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Rohwerder, M.: Intelligent corrosion protection by organic coatings based on conducting polymers. Departmental Seminar at Departement für Chemie und Biochemie der Universität Bern, Bern, Switzerland (2008)
Borissov, D.; Rohwerder, M.: Fundamental Investigation of the Effect of Oxides on the Reaction Kinetics During Hot Dip Galvanizing. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Isik-Uppenkamp, S.; Laaboudi, A.; Rohwerder, M.: Delamination of Polymer/Metal Interfaces: On the Correlation of Kinetics and Interfacial Structure. 212th ECS Meeting, Washington, D.C., USA (2007)
Borodin, S.; Rohwerder, M.: STM-investigation of self-assembly of phosphonates on model oxides. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Laaboudi, A.; Isik-Uppenkamp, S.; Rohwerder, M.: Modelling cathodic delamination: Oxygen reduction and interface degradation at a molecularly well defined coating/metal interface. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flagey, Belgium (2007)
Isik-Uppenkamp, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe Microscopy for characterisation of iron mobility at buried interfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Van De Putte, T.; Borissov, D.; Loison, D.; Penning, J.; Rohwerder, M.; Claessens, S.: Reduction of SiO2 Surface Oxides by Solute Carbon to Improve the Galvanizability of Si alloyed AHSS. International Conference on New Developments in Advanced High Strength Sheet Steels, Orlando, FL, USA (2007)
Rohwerder, M.: Inherent delamination protection by novel zinc alloys. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Rohwerder, M.: Release-Systeme für die Selbstheilung von Polymer/Metall-Grenzflächen. 2.WING Konferenz (BMBF): Der Stoff, aus dem Innovationen sind., Aachen, Germany (2006)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of guest molecules from modified mesoporous silica. 5th International Mesostructured Materials Symposium, Shanghai, China (2006)
Michalik, A.; Paliwoda-Porebska, G.; Rohwerder, M.: Mechanism of corrosion protection by conducting polymers. 57th Annual Meeting of the International Society of Electrochemistry, Edinburgh, UK (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.