Leineweber, A.; Berger, T.; Udyansky, A.; Bugaev, V. N.; Duppel, V.: The incommensurate crystal structure of the Pd5b1-z phase; B ordering driven by elastic interaction between B atoms. Zeitschrift für Kristallographie: International Journal for Structural, Physical, and Chemical Aspects of Crystalline Materials 229 (5), pp. 353 - 367 (2014)
Udyansky, A.; von Pezold, J.; Bugaev, N. V.; Friák, M.; Neugebauer, J.: Interplay between long-range elastic and short-range chemical interactions in Fe–C martensite formation. Physical Review B 79 (22), pp. 224112-1 - 224112-5 (2009)
Zhu, L.-F.; Friák, M.; Dick, A.; Udyansky, A.; Neugebauer, J.: First principles study of elastic properties of eutectic Ti-Fe alloys up to their mechanical stability limits. DPG Spring Meeting 2011, Dresden, Germany (2011)
von Pezold, J.; Udyansky, A.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-Induced Metal-Hydrogen Interactions across the First Transition Series – An Ab Initio Study of Hydrogen Embrittlement. TMS 2011 Meeting, San Diego, CA, USA (2011)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Atomistic study of martensite stability in dilute Fe-based solid solutions. PTM 2010 (Solid-Solid Phase Transformations in Inorganic Materials), Avignon, France (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Impurity ordering in iron: An ab initio based multi-scale approach. GraCoS Workshop (Carbon and Nitrogen in Steels: Measurement, Phase Transformations and Mechanical Properties), Rouen, France (2010)
Udyansky, A.; von Pezold, J.; Neugebauer, J.: Multi-scale modeling of martensite formation in Fe-based solid solutions. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Computational study of interstitial ordering in bcc iron. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…