Torres, E.; Blumenau, A. T.; Biedermann, P. U.: Steric and Chain Length Effects in the (√(3) x √(3))R30°Structures of Alkanethiol Self-Assembled Monolayers on Au(111). ChemPhysChem 12, pp. 999 - 1009 (2011)
Zuo, J.; Torres, E.: Comparison of Adsorption of Mercaptopropyltrimethoxysilane on Amphiphilic TiO2 and Hydroxylated SiO2. Langmuir 26 (19), pp. 15161 - 15168 (2010)
Torres, E.; Blumenau, A. T.; Biedermann, P. U.: Mechanism for phase transitions and vacancy island formation in alkylthiol/Au(111)self-assembled monolayers based on adatom and vacancy-induced reconstructions. Physical Review B 79 (7), pp. 075440-1 - 075440-6 (2009)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: High density structures of ethyl-thiol SAM´s on Au(111): A DFT study. SurMat Seminar, Schloß Gnadenthal, Kleve, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: The Role of Gold Adatoms in Self-Assembled Monolayers of Thiol on Au(111). 6th Congress of the International Society for Theoretical Chemical Physics, ISTCP-VI, University of British Columbia, Vancouver, Canada (2008)
Blumenau, A. T.; Biedermann, P. U.; Torres, E.: Modelling adhesion and delamination at oxide/polymer interfaces. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
Thissen, P.; Özcan, Ö.; Torres, E.; Diesing, D.; Grundmeier, G.: Combining Monte Carlo Kinetics and Density Functional Theory to simulate Temperature Programmed Desorption. American Vacuum Society 54th International Symposium, Seattle, WA, USA (2007)
Biedermann, P. U.; Torres, E.; Blumenau, A. T.: Oxygen Reduction at Thiol/Au(111)SAMs, Atomistic Modelling and Experiment. 212th ECS Meeting, Washington, D.C., USA (2007)
Biederrmann, U. P.; Torres, E.; Blumenau, A. T.: Degradation of Alkanethiol/Au(111) Self-Assembled Monolayers During Oxygen Reduction. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld, Germany (2006)
Torres, E.; Biederrmann, U. P.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. A DFT study of Alkanethiol adsorption sites on Au(111) surfaces, Clausthal, Germany (2006)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Biedermann, P. U.; Torres, E.; Laaboudi, L.; Isik-Uppenkamp, S.; Rohwerder, M.; Blumenau, A. T.: Cathodic Delamination by a Combined Computational and Experimental Approach: The Aklylthiol/Gold Model System. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
Torres, E.: DFT Study of Alkanethiol Self-assembled Monolayers on Gold(111) Surfaces. Dissertation, Ruhr-Universität-Bochum, Fakultät für Physik und Astronomie, Bochum, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…