Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of oxidizing species with the Mg(0001) surface: The role of electrostatic contributions. DPG Frühjahrstagung, Regensburg, Germany (2013)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of 2nd row high electron affinity elements with Mg(0001). DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Cheng, S.-T.: Ab-initio study on the corrosion of pure Mg and Mg-Zn systems. Faraday Discussions Corrosion Chemistry Meeting of the Royal Society of Chemistry, London, UK (2015)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of oxidizing species with the Mg(0001) surface: The role of electrostatic contributions. Connecting electrochemical and water simulations: Status and future challenges, Ringberg, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…