Krüger, T.; Varnik, F.; Raabe, D.: Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Physical Review E 82 (025701) (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Effect of aspect ratio on transverse diffusive broadening: A lattice Boltzmann study. Physical Review E 80 (1), pp. 016304-1 - 016304-9 (2009)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive mixing of solutes in pressure driven microchannels: A Lattice Boltzmann study of the scaling laws. La Houille Blanche, International Water Journal 6, pp. 93 - 100 (2009)
Gross, M.; Varnik, F.; Raabe, D.: Fall and rise of small droplets on rough hydrophobic substrates. Europhysics Letters 88 (26002), pp. 26002-p1 - 26002-p6 (2009)
Varnik, F.; Raabe, D.: Scaling effects in microscale fluid flows at rough solid surfaces. Modeling and Simulation in Materials Science and Engineering 14, pp. 857 - 873 (2006)
Baschnagel, J.; Varnik, F.: Computer simulations of supercooled polymer melts in the bulk and in confined geometry. Journal of Physics: Condensed Matter 17 (32), pp. R851 - R953 (2005)
Varnik, F.; Bocquet, L.; Barrat, L.-J.: A study of the static yield stress in a binary Lennard-Jones glass. The Journal of Chemical Physics 120 (6), pp. 2788 - 2801 (2004)
Baschnagel, J.; Meyer, H.; Varnik, F.; Metzger, S.; Aichele, M.; Müller, M.; Binder, K.: Computer Simulations of Polymers close to Solid Interfaces: Some Selected Topics. Special Issue of Interface Science: Polymers at Interfaces 11, pp. 159 - 173 (2003)
Varnik, F.; Baschnagel, J.; Binder, K.; Mareschal, M.: Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function. European Physical Journal E 12 (167) (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…