Stein, F.: The Nature of Laves Phases – A Critical Assessment of the Current Knowledge on Structure and Stability of Laves Phases. Workshop "The Nature of Laves Phases VI, MPI für Chemische Physik fester Stoffe, Dresden, Germany (2006)
Palm, M.; Schneider, A.; Stein, F.; Sauthoff, G.: Strengthening of Fe–Al-Based Alloys for High-Temperature Applications. 3rd Disc.Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann-Düsseldorf, Germany (2006)
Spiegel, M.; Stein, F.; Pöter, B.: Initial Stages of Oxide Growth on Fe–Al Alloys. 3rd Disc.Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann-Düsseldorf, Germany (2006)
Stein, F.; Palm, M.: DTA Studies on the Fe–Al Phase Diagram. 3rd Disc.Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann-Düsseldorf, Germany (2006)
Palm, M.; Schneider, A.; Stein, F.; Sauthoff, G.: Iron-Aluminium-Base Alloys for Structural Applications at High Temperatures: Needs and Prospects. EUROMAT 2005, Prague, Czech Republic (2005)
Stein, F.; Dovbenko, O. I.; Palm, M.: Experimental Investigations of Structure Type Variations of Laves Phases. International Conference on "Modern Materials Science: Achievements and Problems", Kiev, Ukraine (2005)
Stein, F.; Dovbenko, O. I.; Palm, M.: Phase Relations between Laves Phases in Transition Metal Systems - Case Studies: Co–Nb, Al–Co–Nb, Cr–Ti, Fe–Zr, Al–Fe–Zr. EUROMAT 2005, Prague, Czech Republic (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Phase Equilibria in the Al–Co–Nb Ternary System in the Vicinity of the Laves Phases. CALPHAD XXXIV, Maastricht, The Netherlands (2005)
Stein, F.; Frommeyer, G.: Untersuchung des Erstarrungsgefüges einer unter Schwerelosigkeit erschmolzenen intermetallischen TiAl-Legierung. Workshop "Entwicklung der Basis - Erkennen der Perspektiven", Materialwissenschaften und mg-Forschung, MPI für Eisenforschung, Düsseldorf, Germany (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System. Preliminary Results. International Workshop "Laves Phases IV", MPI für Eisenforschung, Düsseldorf, Germany (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System using Liquid-Solid Diffusion Couples. Preliminary Results. COST 535 Diffusion Couple Workshop, MPI für Eisenforschung, Düsseldorf, Germany (2004)
Stein, F.; Jiang, D.; Palm, M.; Sauthoff, G.: Laves Phase Polytypism in the Co–Nb System. TOFA 2004 - Discussion Meeting on Thermodynamics of Alloys, Wien, Austria (2004)
Stein, F.; Schneider, A.; Frommeyer, G.: Quaternary Fe3Al-Based Alloys with Transition Metals: Effect of Alloying Additions on the Order-Disorder Transitions and the Mechanical Behaviour. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.