Remmele, T.; Schulz, T.; Markurt, T.; Korytov, M.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.: Quantitative measurement of composition fluctuations in InGaN quantum wells. 15th European Microscopy Congress, Manchester Central, UK (2012)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Ab-initio based comparitive study of In incorporation and surface segregation on III- and N-face {0001} InGaN surfaces. SINOPLE mid-term meeting, Berlin, Germany (2011)
Kalesaki, E.; Lymperakis, L.; Kioseoglou, J.; Komninou, P.; Karakostas, T.: Surface Thermodynamics of (11-22) and (11-2-2) Semipolar AlN Surfaces. International Workshop on Nitride Semiconductors, Tampa, FL, USA (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: A multiscale study of the Hydrogen enhanced local plasticity (HELP) mechanism. IWoM3 2009 - International Workshop on Multiscale Materials Modeling, Berlin, Germany (2009)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: Hardness anisotropy of crystalline alpha-chitin: An ab-initio based conformational analysis. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: An ab-initio study of hardness anisotropy of crystalline alpha-chitin. International Max-Planck Workshop on Multiscale Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Lymperakis, L.; Neugebauer, J.: Exploring the 5D configurational space of grain boundaries in aluminun: An ab-initio based multiscale analysis. MRS Fall Meeting, Boston, MA, USA (2006)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale calculations of low-angle grain boundaries in Aluminium. Materials Research Society fall meeting, Boston, MA, USA (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…