Cao, Y. P.; Ma, D.; Raabe, D.: The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomaterialia 5 (1), pp. 240 - 248 (2009)
Cao, Y. P.; Xue, Z. Y.; Chen, X.; Raabe, D.: Correlation between the flow stress and the nominal indentation hardness of soft metals. Scripta Materialia 59, pp. 518 - 521 (2008)
Cao, Y. P.: Determination of the creep exponent of a power-law creep solid using indentation tests. Mechanics of Time-Dependent Materials 11, pp. 159 - 173 (2007)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Investigating the Applicability of the Oliver & Pharr Method to the Nano-Mechanical Characterization of Soft Matter. Gerberich Symposium, 1st International Conference from Nanoparticles and Nanomaterials to Nanodevices and Nanosystems, Halkidiki, Greece (2008)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Nanomechanics characterization of softmatter using nanoindentation. 11th GLADD Meeting, TU Gent, Belgium (2008)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Nano-mechanical Characterization of Soft Matter. Materials science Day, Mechanical Engineering Department at Ruhr-University of Bochum, Bochum, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.