Ektarawong, A.; Simak, S. I.; Alling, B.: Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles. Physical Review B 97 (17), 174104 (2018)
Ektarawong, A.; Simak, S. I.; Alling, B.: First-principles prediction of stabilities and instabilities of compounds and alloys in the ternary B-As-P system. Physical Review B 96 (2), 024202 (2017)
Ektarawong, A.; Simak, S. I.; Alling, B.: Thermodynamic stability and properties of boron subnitrides from first principles. Physical Review B 95 (6), 064206 (2017)
Ektarawong, A.; Simak, S. I.; Alling, B.: Carbon-rich icosahedral boron carbides beyond B4 C and their thermodynamic stabilities at high temperature and pressure from first principles. Physical Review B 94 (5), 054104 (2016)
Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.: Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B6O, B13C2, and B4C, and their mixing thermodynamics. The Journal of Chemical Physics 144 (13), 134503 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…