Zaefferer, S.; Shan, Y.; Madivala, M.: Nano-indentation and electron channeling contrast imaging (ECCI) to understand the interaction of hydrogen and dislocations in a high-Mn TWIP steel. Euromat 2019, Stockholm, Sweden (2019)
Zaefferer, S.; Shan, Y.; Madivala, M.: Combination of nano-indentation and electron channeling contrast imaging (ECCI) to understand the interaction of hydrogen and dislocations in a high-Mn TWIP steel. Nanobrücken 2018, Erlangen, Germany (2018)
Shan, Y.: Investigation on the Influence of Hydrogen on Dislocation Formation during Nanoindentation in TWIP Steels. Master, RWTH Aachen, Aachen, Germany (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…