Ratzker, B.; Ruffino, M.; Shankar, S.; Raabe, D.; Ma, Y.: Elucidating the microstructure evolution during hydrogen-based direct reduction via a case study of single crystal hematite. Acta Materialia 294, 121174 (2025)
Özgün, Ö.; Dirba, I.; Gutfleisch, O.; Ma, Y.; Raabe, D.: Green Ironmaking at Higher H2 Pressure: Reduction Kinetics and Microstructure Formation During Hydrogen-Based Direct Reduction of Hematite Pellets. Journal of Sustainable Metallurgy 10, pp. 1127 - 1140 (2024)
Lu, X.; Ma, Y.; Johnsen, R.; Wang, D.: In situ nanomechanical characterization of hydrogen effects on nickel-based alloy 725 under different metallurgical conditions. Journal of Materials Science & Technology 135, pp. 156 - 169 (2023)
Souza Filho, I. R.; Ma, Y.; Raabe, D.; Springer, H.: Fundamentals of Green Steel Production: On the Role of Gas Pressure During Hydrogen Reduction of Iron Ores. JOM-Journal of the Minerals Metals & Materials Society 75, pp. 2274 - 2286 (2023)
Zhang, S.; Li, K.; Ma, Y.; Bu, Y.; Zeng, L.; Yang, Z.; Zhang, J.: The Adsorption Mechanism of Hydrogen on FeO Crystal Surfaces: A Density Functional Theory Study. Nanomaterials 13 (14), 2051 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…