Todorova, M.; Neugebauer, J.: Extending the Concept of Semiconductor Defect Chemistry to Electrochemistry. TMS Annual Meeting, San Antonio, TX, USA (2013)
Todorova, M.: Extending thermodynamic concepts combined with first-principles calculations to address questions related to aqueous corrosion: Potential and challenges. Seminar talk at Universität Ulm, Lehrstuhl für Theoretische Chemie, Ulm, Germany (2012)
Bauer, K. D.; Todorova, M.; Hingerl, K.; Neugebauer, J.: Ab-initio Study on Liquid Metal Embrittlement in the Fe/Zn System. DPG Frühjahrstagung 2012, Bochum, Germany (2012)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of 2nd row high electron affinity elements with Mg(0001). DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Neugebauer, J.: Ab initio study of stability of Fe3Al surfaces in contact with an oxygen atmosphere. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Todorova, M.: Extending the concept of semiconductor defect chemistry to electro-chemistry: Potential and challenges. Seminar talk at Lehrstuhl für Theoretische Chemie, Universität Duisburg-Essen, Essen, Germany (2012)
Todorova, M.: Combining ab initio calculations with thermodynamic concepts to address questions related to aqueous corrosion. Seminar talk at Lehrstuhr für Theoretische Chemie, TU München, München, Germany (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Neugebauer, J.: Ab initio study of stability of Fe3Al surfaces in contact with an oxygen atmosphere. 1st Austrian/German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Palm, M.; Neugebauer, J.: Theoretical study of the environmental effect of H-containing gases on Fe–Al surfaces. FeAl2011, Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Lanzarote, Canary Islands, Spain (2011)
Todorova, M.: Extending the concept of semiconductor defect chemistry to electro-chemistry: Constructing electro-chemical E/pH diagrams based on ab-initio calculations. Workshop ''Modern developments in the ab initio description of charged systems for semiconductors and electrochemistry", Ringberg, Germany (2011)
Todorova, M.: Stabilisation of polar ZnO(0001) surfaces in dry and humid environment. Fritz-Haber-Institut der MPG, Theorie-Seminar, Berlin, Germany (2011)
Todorova, M.: Stability of polar ZnO(0001) surfaces in dry and humid atmosphere. TYC Workshop ''Thermodynamics and kinetics of dopants, defects and adatoms at surfaces'' at University College London, London, UK (2011)
Todorova, M.; Valtiner, M.; Neugebauer, J.: Hydrogen adsorption on polar ZnO(0001)–Zn - Extending equilibrium surface phase diagrams to kinetically stabilised structures. March meeting of the American Physical Society (APS), Dallas, TX, USA (2011)
Todorova, M.; Neugebauer, J.: On the accuracy of ion hydration energies - An ab initio study. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2011)
Todorova, M.: Corrosion from first principles: A new approach to construct electrochemical E-pH diagrams. Kristallographisches Kolloquium at Fakultät Geowissenschaften, LMU München, München, Germany (2010)
Todorova, M.: Towards Corrosion Control from First Principles - A New Approach to Construct ab initio Electrochemical E-pH Diagrams. Gordon Research Conference ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.