Biedermann, P. U.; Nayak, S.; Erbe, A.: Catching intermediates of the oxygen reduction reaction in situ: Insights from electrochemical ATIR-IR and DFT. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Chen, Y.; Erbe, A.: Probing interfacial layer thickness and electronic properties of electrochemical interfaces: The example of oxide on zinc. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Nayak, S.; Chia-Fu, C.; Erbe, A.: ATR-IR spectroscopic study of H2O and D2O in one-dimensional confinement. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Biedermann, P. U.; Nayak, S.; Erbe, A.: Towards Understanding the Mechanism of the Electrochemical Oxygen Reduction: DFT Modeling and Spectroelectrochemical Validation. Pacific Rim Meeting on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Chen, Y.; Schneider, P.; Erbe, A.: Investigation of electrochemical oxide growth on zinc by spectroscopic ellipsometry: An example of in operando spectroscopy. EMNT 2012 - 9th International Symposium on Electrochemical Micro & Nanosystem Technologies, Linz, Austria (2012)
Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: Biological D-surface Structure: A Lesson from Nature on Photonic Crystals Design. 10th International Symposium on Photonic and Electromagnetic Crystal Structures(PECS-X), Santa Fe, NM, USA (2012)
Erbe, A.: Native and electrochemically grown oxides on metals: The dark side of semiconductor research. Seminar Talk at NTH School for Contacts in Nanosystems Spring Workshop 2012, Goslar, Germany (2012)
Erbe, A.: Oberflächendesign für empfindliche ATR-Spektroskopie in Modellexperimenten zum Verständnis der Korrosion. Bruker Optik Anwendertreffen, Ettlingen, Germany (2011)
Erbe, A.: Oberflächendesign für empfindliche ATR-Spektroskopie in Modellexperimenten zum Verständnis der Korrosion. Bruker Optik Anwendertreffen, Ettlingen, Germany (2011)
Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: The three-dimensional photonic crystal in scales of the weevil Entimus imperialis: A natural D-surface bicontinuous structure. Geometry of Interfaces, Primošten, Croatia (2011)
Wu, X.; Erbe, A.; Fabritius, H. O.; Raabe, D.: Structure/function relations of a diamond-based photonic crystal structure in scales of the weevil Entimus imperialis (Curculionidae). Euromat 2011, Montpellier, France (2011)
Chen, Y.; Schneider, P.; Erbe, A.: In-situ ellipsometric monitoring of electrochemical preparation of ZnO nanoplates. 62nd Annual Meeting of the International Society of Electrochemistry, Niigata, Japan (2011)
Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A.: In situ Electrochemical ATR-IR Investigation of the Oxygen Reduction on Germanium. 62nd Annual Meeting of the International Society of Electrochemistry, Niigata, Japan (2011)
Erbe, A.: Optical surface design for sensitive internal reflection infrared spectroscopy and applications to electrochemical questions. Seminar, Université de Fribourg, Department of Physics, Fribourg, Switzerland (2011)
Wu, X.; Erbe, A.; Fabritius, H. O.; Raabe, D.: Structure and function of the biological photonic crystals in the scales of a beetle. European Materials Research Society E-MRS Spring Meeting 2011, May 2011, Nice, France (2011)
Erbe, A.: Thin amorphous oxides and intermediates in chemical reactions: Challenging problems in interface science probed with photons. Mini-Workshop on Surface Science for Inauguration of the Turkish Surface Science Society, Ankara, Turkey (2011)
Erbe, A.: From electrochemistry to colloidal interfaces - optical answers to chemical questions. Seminar, Bilkent University, Department of Chemistry, Ankara, Turkey, (2011)
Erbe, A.: Optical design of interfaces for internal reflection infrared-spectroscopic experiments. Seminar, Karlsruhe Institute of Technology, Institute of Toxicology and Genetics. Karlsruhe, Germany (2011)
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
In this project we study a new strategy for the theory-guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical approach in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys...
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…