Jo, M. C.; Choi, J. H.; Lee, H.; Zargaran, A.; Ryu, J.; Sohn, S. S.; Kim, N. J.; Lee, S.: Effects of solute segregation on tensile properties and serration behavior in ultra-high-strength high-Mn TRIP steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 740-741, pp. 16 - 27 (2019)
Kim, D. W.; Sohn, S. S.; Kim, W.-K.; Kim, K.-S.; Lee, S.: Study of Bauschinger effect of acicular ferrite and polygonal ferrite through ex-situ interrupted bending tests in API X80 linepipe steels. Scientific Reports 8 (1), 15598 (2018)
Jo, M. C.; Lee, H.; Zargaran, A.; Ryu, J.; Sohn, S. S.; Kim, N. J.; Lee, S.: Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 737, pp. 69 - 76 (2018)
Lee, D. H.; Sohn, S. S.; Song, H.; Ro, Y.; Lee, C. S.; Lee, S.; Hwang, B.: Effects of Start and Finish Cooling Temperatures on the Yield Strength and Uniform Elongation of Strain-Based API X100 Pipeline Steels. Metallurgical and Materials Transactions A 49 (10), pp. 4536 - 4543 (2018)
Kim, Y.-J.; Kim, H.; Kang, M.; Rhee, K.; Shin, S. Y.; Lee, S.: Correlation of microstructure, chip-forming properties, and dynamic torsional properties in free-machining steels. Metallurgical and Materials Transactions A 44 (10), pp. 4613 - 4625 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Effects of microstructure and pre-strain on Bauschinger effect in API X70 and X80 linepipe steels. Metals and Materials International 19 (3), pp. 423 - 431 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Analysis and estimation of the yield strength of API X70 and X80 linepipe steels by double-cycle simulation tests. Metals and Materials International 19 (3), pp. 377 - 388 (2013)
Kim, H.; Kang, M.; Shin, S. Y.; Lee, S.: Alligatoring phenomenon occurring during hot rolling of free-machining steel wire rods. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 568, pp. 8 - 19 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…