Vatti, A. K.: An ab initio study of muscovite mica and formation energy of ions in liquid water. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2016)
Bhogireddy, V. S. P. K.: Liquid metal induced grain boundary embrittlement: A multi-scale study. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2016)
Kenmoe, S.: Ab Initio Study of the Low-Index Non-Polar Zinc Oxide Surfaces in Contact with Water: from Single Molecules to Multilayers. Dissertation, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, Bochum, Germany (2015)
Lange, B.: Limitierungen der p-Dotierbarkeit von Galliumnitrid: Eine Defektstudie von GaN:Mg auf Basis der Dichtefunktionaltheorie. Dissertation, Universität Paderborn, Paderborn, Germany (2012)
Hamou, F. R.: Numerical Investigation of Scanning Electrochemical Potential Microscopy (SECPM). Dissertation, Fakultät für Physik und Astronomie der Ruhr-Universität, Bochum, Germany (2010)
Abu-Farsakh, H.: Understanding the interplay between thermodynamics and surface kinetics in the growth of dilute nitride alloys from first principles. Dissertation, University of Paderborn, Paderborn, Germany (2010)
Marquardt, O.: Implementation and application of continuum elasticity theory and a k.p-model to investigate optoelectronic properties of semiconductor nanostructures. Dissertation, University of Paderborn, Paderborn, Germany (2010)
Grabowski, B.: Towards ab initio assisted materials design: DFT based thermodynamics up to the melting point. Dissertation, University of Paderborn, Paderborn, Germany (2009)
Torres, E.: DFT Study of Alkanethiol Self-assembled Monolayers on Gold(111) Surfaces. Dissertation, Ruhr-Universität-Bochum, Fakultät für Physik und Astronomie, Bochum, Germany (2009)
Dick, A.: Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces. Dissertation, University of Paderborn, Paderborn, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.