Güder, Ü.; Yavaş, A.; Çeken, M.; Yalçın, Ü.; Raabe, D.: A New Type of Steel-Making Crucible from Medieval Anatolia. 7th International Conference of Medieval Archaeology, online, Zagreb, Croatia (2020)
Raabe, D.: Theory-guided design of materials, microstructures and processes. Workshop on the Future of Materials Science, Institute of Nanotechnology, KIT, online, Karlsruhe, Germany (2020)
Raabe, D.; Diehl, M.; Shanthraj, P.; Sedighiani, K.; Roters, F.: Multi-scale and multi-physics simulations of chemo-mechanical crystal plasticity problems for complex engineering materials using DAMASK. Online Colloquium Lecture, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden (2020)
Kwiatkowski da Silva, A.; Ponge, D.; Gault, B.; Raabe, D.: The Relevance of Interfacial Segregation for Controlling Second Phase Precipitation in Advanced High Strength Steels. TMS 2020 Annual Meeting & Exhibition, San Diego, CA, USA (2020)
Sedighiani, K.; Traka, K.; Diehl, M.; Roters, F.; Bos, K.; Sietsma, J.; Raabe, D.: A Coupled Crystal Plasticity – Cellular Automaton Method for 3D Modeling of Recrystallization: Part I: Crystal Plasticity. International Conference on Plasticity, Damage, and Fracture, Riviera May, Mexico (2020)
Diehl, M.; Kusampudi, N.; Kusche, C.; Raabe, D.; Korte-Kerzel, S.: Combining Experiments, Simulations, and Data Science to Understand Damage in Dual Phase Steels. International Conference on Plasticity, Damage, and Fracture, Riviera May, Mexico (2020)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: Understanding the Plastic Behavior of Tungsten From First Principles to Crystal Plasticity. International Mechanical Engineering Congress & Exposition (IMECE) 2019, Salt Lake City, UT, USA (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…