Han, C. S.; Ma, A.; Roters, F.; Raabe, D.: A Finite Element approach with patch projection for strain gradient plasticity formulations. International Journal of Plasticity 23, pp. 690 - 710 (2007)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation in Particle-containing Fe3Al Alloys. Materials Science Forum 550, not specified, pp. 345 - 350 (2007)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive law for BCC materials in crystal plasticity FEM. Computational Materials Science 39, pp. 91 - 95 (2007)
Raabe, D.: A texture-component Avrami model for predicting recrystallization textures, kinetics and grain size. Modelling and Simulation in Materials Science and Engineering 15, pp. 39 - 63 (2007)
Raabe, D.: Recrystallization Models for the Prediction of Crystallographic Textures with Respect to Process Simulation. The Journal of Strain Analysis for Engineering Design 42 (4), pp. 253 - 268 (2007)
Raabe, D.; Al-Sawalmih, A.; Yi, S. B.; Fabritius, H.: Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomaterialia 3, pp. 882 - 895 (2007)
Sandim, H. R. Z.; Bernardi, H. H.; Verlinden, B.; Raabe, D.: Equal channel angular extrusion of niobium single crystals. Materials Science and Engineering: A 467, pp. 44 - 52 (2007)
Takahashi, T.; Ponge, D.; Raabe, D.: Investigation of orientation gradients in pearlite in hypoeutectoid steel by use of orientation imaging microscopy. Steel Research International 78 (1), pp. 38 - 44 (2007)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Simulation of earing during deep drawing of an Al-3%Mg alloy (AA 5754) using a texture component crystal plasticity FEM. Journal of Materials Processing Technology 183, pp. 169 - 175 (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. Materials Science Forum 558 / 559, pp. 1035 - 1042 (2007)
Zambaldi, C.; Roters, F.; Raabe, D.; Glatzel, U.: Modeling and experiments on the indentation deformation and recrystallization of a single‑crystal nickel-base superalloy. Materials Science and Engineering A 454–455, pp. 433 - 440 (2007)
Liu, W. C.; Li, Z.; Man, C.-S.; Raabe, D.; Morris, J. G.: Effect of precipitation on rolling texture evolution in continuous cast AA 3105 aluminum alloy. Materials Science and Engineering: A 434 (1-2), pp. 105 - 113 (2006)
Han, C. S.; Roters, F.; Raabe, D.: On strain gradients and size-dependent hardening descriptions in crystal plasticity frameworks. Metals and Materials International 12, 5, pp. 407 - 411 (2006)
Dorner, D.; Zaefferer, S.; Lahn, L.; Raabe, D.: Overview of Microstructure and Microtexture Development in Grain-oriented Silicon Steel. Journal of Magnetism and Magnetic Materials 304 (2), pp. 183 - 186 (2006)
Li, F.; Ardehali Barani, A.; Ponge, D.; Raabe, D.: Austenite Grain Coarsening Behavior in a Medium Carbon Si–Cr spring steel with and without Vanadium. Steel Research International 77 (8), pp. 590 - 594 (2006)
Raabe, D.; Jia, J.: Evolution of crystallinity and of crystallographic orientation in isotactic polypropylene during rolling and heat treatment. European Polymer Journal 42 (8), pp. 1755 - 1766 (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].