Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: Determination of the crystal structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. Intermetallics 18 (1), pp. 150 - 156 (2010)
Krein, R.; Palm, M.; Heilmaier, M.: Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2 + L21 Fe–Al–Ti. Journal of Materials Research 24 (11), pp. 3412 - 3421 (2009)
Palm, M.: Phase equilibria in the Fe corner of the Fe–Al–Nb system between 800 and 1150°C. Journal of Alloys and Compounds 475 (1-2), pp. 173 - 177 (2009)
Palm, M.: Fe–Al materials for structural applications at high temperatures: Current research at MPIE. International Journal of Materials Research 100 (3), pp. 277 - 287 (2009)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part II: Isothermal sections at 1000 and 1150 °C. Intermetallics 16 (6), pp. 834 - 846 (2008)
Krein, R.; Palm, M.: The influence of Cr and B additions on the mechanical properties and oxidation behaviour of L21-ordered Fe-Al-Ti-based alloys at high temperatures. Acta Materialia 56 (10), pp. 2400 - 2405 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800 °C. Intermetallics 16 (5), pp. 706 - 716 (2008)
Stein, F.; Palm, M.: Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. International Journal of Materials Research 98 (7), pp. 580 - 588 (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…