Todorova, M.; Surendralal, S.; Wippermann, S. M.; Deißenbeck, F.; Neugebauer, J.: Insights into processes at electrochemical solid/liquid interfaces from ab initio molecular dynamics simulations. ICTP-Workshop on “Physics and Chemistry of Solid/Liquid Interfaces for Energy Conversion and Storage”, Virtual Meeting, Trieste, Italy (2021)
Neugebauer, J.: Materials design by exploiting high-dimensional chemical and structural configuration spaces. Kolloquium im Rahmen des SFB 986, Technische Universität Hamburg-Harburg, Online Meeting, Hamburg-Harburg, Germany (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. Potential Workshop, ICAMS, virtual, Bochum, Germany (2021)
Neugebauer, J.; Ikeda, Y.; Körmann, F.: Materials design based on efficient sampling of high dimensional chemical and thermodynamic configuration spaces. Workflows for Atomistic Simulations, Ruhr-Universität Bochum, Online Meeting, Bochum, Germany (2021)
Neugebauer, J.; Yoo, S.-H.; Lymperakis, L.: Ab initio insights into fundamental intrinsic growth and materials limitations in group-III-nitrides. MRS 2021 Fall Meeting, Virtual Conference, Boston, MA, USA (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. AMS Seminar, virtual, Bochum, Germany (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…