Sobota, L.; Bondue, C. J.; Hosseini, P.; Kaiser, C.; Spallek, M.; Tschulik, K.: Impact of the Electrochemically Inert Furan Ring on the Oxidation of the Alcohol and Aldehyde Functional Group of 5-Hydroxymethylfurfural (HMF). ChemElectroChem 11 (1), e202300151 (2024)
Luan, C.; Corva, M.; Hagemann, U.; Wang, H.; Heidelmann, M.; Tschulik, K.; Li, T.: Atomic-Scale Insights into Morphological, Structural, and Compositional Evolution of CoOOH during Oxygen Evolution Reaction. ACS Catalysis 13 (2), pp. 1400 - 1411 (2023)
Piontek, S. M.; Naujoks, D.; Tabassum, T.; DelloStritto, M. J.; Jaugstetter, M.; Hosseini, P.; Corva, M.; Ludwig, Alfred, A.; Tschulik, K.; Klein, M. L.et al.; Petersen, P. B.: Probing the Gold/Water Interface with Surface-Specific Spectroscopy. ACS Physical Chemistry Au 3 (1), pp. 119 - 129 (2023)
Kanokkanchana, K.; Tschulik, K.: Electronic Circuit Simulations as a Tool to Understand Distorted Signals in Single-Entity Electrochemistry. The Journal of Physical Chemistry Letters 13 (43), pp. 10120 - 10125 (2022)
Corva, M.; Blanc, N.; Bondue, C. J.; Tschulik, K.: Differential Tafel Analysis: A Quick and Robust Tool to Inspect and Benchmark Charge Transfer in Electrocatalysis. ACS Catalysis 12, pp. 13805 - 13812 (2022)
Rurainsky, C.; Nettler, D. -.; Pahl, T.; Just, A.; Cignoni, P.; Kanokkanchana, K.; Tschulik, K.: Electrochemical dealloying in a magnetic field-Tapping the potential for catalyst and material design. Electrochimica Acta 426, 140807 (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Linnemann, J.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Electron microscopy insights on the mechanism of morphology/phase transformations in manganese oxides. Institut de Nanociència i Nanotecnologia (ICN2), Bellaterra, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Mechanism of coupled phase/morphology transformation of 2D manganese oxides through Fe galvanic exchange reaction. Chemistry Department Seminar, Kangwon National University, Chuncheon, South Korea (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…