Zhou, X.; Hickel, T.; Gault, B.; Ophus, C.; Liebscher, C.; Dehm, G.; Raabe, D.: Exploring the Relationship Between Grain Boundary Structure and Chemical Composition at the Atomic Level. International Conference on Intergranular and Interphase Boundaries in Materials (IIB 2024), Beijing, China (2024)
Dehm, G.: Atomic resolved imaging of grain boundary phase transitions in pure and alloyed metallic thin films. 17th International Conference on Intergranular and Interphase Boundaries in Materials (IIB 2024), Beijing, China (2024)
Lee, J. S.; Dehm, G.; Best, J. P.; Stein, F.: A Micromechanical Study on the Correlation of Composition and Properties of B2 FeAl across the Interface of an Fe–Al Diffusion Couple. ECR Day, Ruhr Universität Bochum, Bochum, Germany (2024)
Dehm, G.; Devulapalli, V.; Schulz, F.; Soares Barreto, E.; Ellendt, N.; Jägle, E. A.: Strengthening of CoCrFe(Mn)Ni high entropy alloys by dislocation pinning: From Lattice friction & SRO to particle strengthening. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2024, Bernkastel-kues, Germany (2024)
Vacirca, D.; Bignoli, F.; Li Bassi, A.; Best, J. P.; Dehm, G.; Faurie, D.; Djemia, P.; Ghidelli, M.: Boosting mechanical properties of thin film high entropy alloys through nanoengineering design strategies. 16th International Conference on Local Mechanical Properties, Prague, Czech Republic (2024)
Bhat, M. K.; Brink, T.; Ding, H.; Jung, C.; Best, J. P.; Dehm, G.: Influence of the Structure and Chemistry of Σ5 Grain Boundaries on Microscale Strengthening in Cu Bicrystals. TMS Annual Meeting and Exhibition 2024, Orlando, FL, USA (2024)
Kanjilal, A.; Best, J. P.; Dehm, G.: Elevated temperature deformation of intermetallic phases in Mg–Al–Ca alloy at small length scale. International conference on creep and fracture of engineering materials and structures, Creep 2024, Bangalore, India (2024)
Kini, M. K.; Nandy, S.; Best, J. P.; Dehm, G.: Deformation of CoCrFeNi alloy thin films under thermal fatigue. International Conference on Creep and Fracture of Engineering Materials and Structures CREEP 2024, Bangalore, India (2024)
Kanjilal, A.; Best, J. P.; Dehm, G.: Using in-situ nano- and micromechanical testing to probe the fracture behavior of intermetallic Laves phase materials. 7th International Indentation Workshop – IIW7, Hyderabad, India (2023)
Dehm, G.: Resolving the interplay of structure and energy landscapes of tilt grain boundaries in metals. 3rd ELSICS Conference and Bunsen-Colloquium “Energy Landscapes and Structure in Ion Conducting Solids (ELSICS)”, Ulm, Germany (2023)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.