Demir, E.: Constitutive modeling of fcc single crystals and experimental study of mechanical size effects. Dissertation, RWTH Aachen, Aachen, Germany (2010)
Aghajani, A.: Evolution of microstructure during long-term creep of a tempered martensite ferritic steel. Dissertation, Ruhr-University Bochum, Bochum (2009)
Huynh, N. N.: Modelling of Microstructure Evolution and Crack Opening in FCC Materials under Tension. Dissertation, Wollongong University, Wollongong New South Wales [Australia] (2009)
Liu, T.: High Resolution Investigation of Texture Formation Process in Diamond Films and the Related Macro-Stresses. Dissertation, Ruhr-University Bochum, Bochum [Germany] (2009)
Thomas, I.: Untersuchung metallphysikalischer und messtechnischer Grundlagen zur Rekristallisation und Erholung mikrolegierter IF Stähle. Dissertation, RWTH Aachen, Aachen, Germany (2008)
Cedat, D.: Modeling and Experiment on Mo-based high temperature composites. Dissertation, Ecole Centrale Paris, Laboratoire for Materials, Paris [France] (2008)
Sachs, C.: Microstructure and mechanical properties of the exoskeleton of the lobster Homarus americanus as an example of a biological composite material. Dissertation, RWTH Aachen, Aachen, Germany (2008)
Tjahjanto, D.: Micromechanical Modeling and Simulations of Tranformation-Induced Plasticity in Multiphase Carbon Steels. Dissertation, TU Delft, Delft, The Netherlands (2008)
Klüber, C.: Korrelation von mechanischen Eigenschaften und Kristallorientierung auf mikroskopischer und nanoskopischer Ebene. Dissertation, RWTH Aachen, Aachen, Germany (2008)
Bastos da Silva, A. F.: Characterization of the Microstructure, Grain Boundaries and Texture of Nanostructured Electrodeposited CoNi by use of EBSD. Dissertation, RWTH Aachen, Aachen, Germany (2007)
Goerdeler, M.: Application of a dislocation density based flow stress model in the integrative through-process modeling of Aluminium production. Dissertation, RWTH Aachen, Aachen, Germany (2007)
Wolff, C.: Der tribologisch asymmetrische Flachstauchversuch - Eine neue Methode zur Analyse von Reibungsvorgängen bei Umformprozessen. Dissertation, RWTH Aachen, Aachen, Germany (2001)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…