Camuti, L.; Kim, S.-H.; Podjaski, F.; Vega-Paredes, M.; Mingers, A. M.; Acartürk, T.; Starke, U.; Lotsch, B. V.; Scheu, C.; Gault, B.et al.; Zhang, S.: Kinetics and direct imaging of electrochemically formed palladium hydride for efficient hydrogen evolution reaction. Physics > Chemical Physics (2025)
Kanjilal, A.; Duarte, M. J.; Scheu, C.; Dehm, G.: Hydrogen Permeation Barrier Layers for the Hydrogen Economy. Annual Review of Materials Research 55, pp. 125 - 149 (2025)
Cheng, N.; Kanzler, L.; Jiang, Y.; Mingers, A. M.; Weiss, M.; Scheu, C.; Marschall, R.; Zhang, S.: Activity and stability of ZnFe2O4 photoanodes under photoelectrochemical conditions. ACS Catalysis 14 (14), pp. 10789 - 10795 (2024)
Felten, M.; Lutz, A.; Aliramaji, S.; Zhang, S.; Scheu, C.; Schneider, J. M.; Zander, D.: The effect of Al on the corrosion resistance of binary Mg–Al solid solutions: Combining in-situ electrochemistry with combinatorial thin films. Electrochemistry Communications 164, 107749 (2024)
Felten, M.; Chaineux, V.; Zhang, S.; Tehranchi, A.; Hickel, T.; Scheu, C.; Spille, J.; Lipińska-Chwałek, M.; Mayer, J.; Berkels, B.et al.; Hans, M.; Greving, I.; Flenner, S.; Sefa, S.; Zander, D.: The effect of Laves phases and nano-precipitates on the electrochemical corrosion resistance of Mg–Al–Ca alloys under alkaline conditions. Journal of Magnesium and Alloys 12 (6), pp. 2447 - 2461 (2024)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.