Dubosq, R.; Rogowitz, A.; Schweinar, K.; Gault, B.; Schneider, D.: A 2D and 3D nanostructural study of naturally deformed pyrite: assessing the links between trace element mobility and defect structures. Contributions to Mineralogy and Petrology 174, 72 (2019)
Springer, H.; Zhang, J.; Szczepaniak, A.; Belde, M. M.; Gault, B.; Raabe, D.: Light, strong and cost effective: Martensitic steels based on the Fe - Al - C system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 762, 138088 (2019)
Palanisamy, D.; Raabe, D.; Gault, B.: On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy. Acta Materialia 174, pp. 227 - 236 (2019)
Pandey, P.; Makineni, S. K.; Gault, B.; Chattopadhyay, K.: On the origin of a remarkable increase in the strength and stability of an Al rich Al–Ni eutectic alloy by Zr addition. Acta Materialia 170, pp. 205 - 217 (2019)
Kühbach, M.; Breen, A. J.; Herbig, M.; Gault, B.: Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Tip Orientations Using TAPSim. Microscopy and Microanalysis 25 (2), pp. 320 - 330 (2019)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.