Amberger, D.; Eisenlohr, P.; Göken, M.: On the importance of a connected hard-phase skeleton for the creep resistance of Mg alloys. Acta Materialia 60, pp. 2277 - 2289 (2012)
Lebensohn, R.A.; Kanjarla, A.K.; Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. International Journal of Plasticity 32-33, pp. 59 - 69 (2012)
Yang, Y.; Wang, L.; Zambaldi, C.; Eisenlohr, P.; Barabash, R.; Liu, W.; Stoudt, M. R.; Crimp, M. A.; Bieler, T. R.: Characterization and Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Journal of Microscopy 63 (9), pp. 66 - 73 (2011)
Blum, W.; Eisenlohr, P.: Structure Evolution and Deformation Resistance in Production and Application of Ultrafine-grained Materials -- the Concept of Steady-state Grains. Materials Science Forum 683, pp. 163 - 181 (2011)
Mekala, S.; Eisenlohr, P.; Blum, W.: Control of dynamic recovery and strength by subgrain boundaries - Insights from stress-change tests on CaF2 single crystals. Philosophical Magazine A 91 (6), pp. 908 - 931 (2011)
Yang, Y.; Wang, L.; Bieler, T.; Eisenlohr, P.; Crimp, M.: Quantitative Atomic Force Microscopy Characterization and Crystal Plasticity Finite Element Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Metallurgical and Materials Transactions A 42 (3), pp. 636 - 644 (2011)
Amberger, D.; Eisenlohr, P.; Göken, M.: Influence of microstructure on creep strength of MRI 230D Mg alloy. Journal of Physics: Conference Series 240 (1), 012068, pp. 01268-1 - 01268-4 (2010)
Blum, W.; Eisenlohr, P.: A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials. Journal of Physics: Conference Series 240 (1), 012136, pp. 012136-1 - 012136-4 (2010)
Liu, B.; Raabe, D.; Roters, F.; Eisenlohr, P.; Lebensohn, R. A.: Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Modelling and Simulation in Materials Science and Engineering 18 (8), 085005, pp. 085005-1 - 085005-21 (2010)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering 18 (1), 015006, pp. 015006-1 - 015006-21 (2010)
Wang, L.; Eisenlohr, P.; Yang, Y.; Bieler, T. R.; Crimp, M. A.: Nucleation of paired twins at grain boundaries in titanium. Scripta Materialia 63, pp. 827 - 830 (2010)
Wang, L.; Yang, Y.; Eisenlohr, P.; Bieler, T. R.; Crimp, M. A.; Mason, D. E.: Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium. Metallurgical and Materials Transactions A 41 (2), pp. 421 - 430 (2010)
Sadrabadi, P.; Eisenlohr, P.; Wehrhan, G.; Stäblein, J.; Parthier, L.; Blum, W.: Evolution of dislocation structure and deformation resistance in creep exemplified on single crystals of CaF2. Materials Science and Engineering A 510-511, pp. 46 - 50 (2009)
Amberger, D.; Eisenlohr, P.; Göken, M.: Microstructural evolution during creep of Ca-containing AZ91. Materials Science and Engineering A 510-511, pp. 398 - 402 (2009)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution