Tehranchi, A.; Zhou, X.; Curtin, W. A.: A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction. Acta Materialia 185, pp. 98 - 109 (2020)
Tehranchi, A.; Curtin, W. A.: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Engineering Fracture Mechanics 216, 106502 (2019)
Leyson, G.; Curtin, W. A.: Solute strengthening at high temperatures. Modelling and Simulation in Materials Science and Engineering 24 (6), 065005 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.