Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. European Atom Probe Workshop 2013 at ETH Zürich, Zürich, Switzerland (2013)
Tasan, C. C.; Diehl, M.; Yan, D.; Shanthraj, P.; Roters, F.; Eisenlohr, P.; Raabe, D.: Integrated in-situ experiments – full field crystal plasticity simulations to analyze stress – strain partitioning in multi-phase alloys. Nanomechanical Testing in Materials Research and Development IV, Olhão, Algarve, Portugal (2013)
Tasan, C. C.; Wang, M.; Ponge, D.; Kostka, A.; Raabe, D.: Size effects on austenite stability investigated by in-situ EBSD. BSSM 9th Int. Conf. on Advances in Experimental Mechanics, Cardiff, UK (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. BSSM 9th Int. Conf. on Advances in Experimental Mechanics, Cardiff, UK (2013)
Gutiérrez-Urrutia, I.; Raabe, D.: Electron channelling contrast imaging under controlled diffraction conditions: A powerful technique to characterize deformation structures in the SEM. Euromat 2013, Sevilla, Spain (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Euromat 2013, Sevilla, Spain (2013)
Kuzmina, M.; Ponge, D.; Raabe, D.: Embrittlement effect in medium Fe–Mn alloys. Study of grain boundary segregation. Euromat 2013, Sevilla, Spain (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany (2013)
Zhang, H.; Ponge, D.; Raabe, D.: The superplasticity evaluation of a Mn–Si–Cr alloyed steel at different microstructural and deformation conditions. Euromat 2013, Sevilla, Spain (2013)
Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…