Jägle, E. A.: Metallische Werkstoffe in der Additiven Fertigung. Workshop "Steels for Additive Manufacturing", Stahlinstitut,VDEh, Düsseldorf, Düsseldorf, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Seminar Materials Science and Technology, Ruhr-Universität Bochum, Bochum, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Werkstoffkolloquium 2016, Deutsches Zentrum für Luft- und Raumfahrt Köln, Köln, Germany (2016)
Jägle, E. A.: Phase transformations in alloys produced by Laser Additive Manufacturing. Spezialseminar Fakultät für Werkstoffwissenschaft und Werkstofftechnologie, TU Bergakademie Freiberg, Freiberg, Germany (2016)
Jägle, E. A.: Solidification cracking during Selective Laser Melting of Inconel 738LC: origins and remedy. Multiscale Materials Modelling conference, Dijon, France (2016)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Precipitation Reaction in a Maraging Steel during Laser Additive Manufacturing triggered by Intrinsic Heat Treatment. Materials Science and Engineering Congress, Darmstadt, Germany (2016)
Jägle, E. A.: Small variations in powder composition lead to strong differences in part properties. Alloys for Additive Manufacturing Workshop 2016, Düsseldorf, Germany (2016)
Jägle, E. A.: Alloys for Laser Additive Manufacturing: general considerations and precipitation reactions. Seminar at Institut für Werkstoff-Forschung, DLR Köln 2016, Köln, Germany (2016)
Jägle, E. A.: Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing. Seminar at EMPA (Eidgenössische Materialprüfungs- und Forschungsanstalt), Dübendorf, Switzerland (2016)
Jägle, E. A.: Alloys for and by Laser Additive Manufacturing – the basic research perspective. 2nd European Scientific Steel Panel – Metal Additive Manufacturing, Steel Institute VdEH, Düsseldorf, Germany (2015)
Jägle, E. A.: Maraging steel produced by LAM: Influence of processing on precipitation and austenite reversion. Phase Transformations in Inorganic Materials (PTM), Whistler, BC, Canada (2015)
Jägle, E. A.; Tytko, D.; Choi, P.-P.; Raabe, D.: Deformation-induced intermixing in a model multilayer system. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…