Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Delft, The Netherlands (2009)
Salgin, B.; Rohwerder, M.: A New Approach to Determine Ion Mobility Coefficients for Delamination Scenarios. electrochem09 and 50th Corrosion Science Symposium, Manchester, UK (2009)
Salgin, B.; Rohwerder, M.: A New Approach to Determine Ion Mobility Coefficients for Delamination Scenarios. 60th Annual Meeting of the International Meeting of the International Society of Electrochemistry, Beijing, China (2009)
Salgin, B.; Rohwerder, M.: Effects of Semiconducting Properties of Surface Oxide on the Delamination at the Polymer/Zinc Interface. SurMat Seminar, Kleve, Germany (2008)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Conference 2011, Noordwijkerhout, The Netherlands (2011)
Salgin, B.; Rohwerder, M.: Scanning Kelvin Probe (SKP) as a tool for monitoring ion mobility on insulators. M2i Conference 2009, Noordwijkerhout, The Netherlands (2009)
Salgin, B.; Rohwerder, M.: Effects of the Semiconducting Properties of Surface Oxide on the Delamination at the Polymer/Metal Interface. 2nd International IMPRS-SurMat Workshop, Bochum, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.