Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Planar Defects in Pure Iron. SFB-761 Annual Meeting 2013, Herdecke, Germany (2013)
Bleskov, I.; Körmann, F.; Hickel, T.; Neugebauer, J.: Impact of Magnetism on Thermodynamic Properties of Iron. International Symposium “Frontiers In Electronic Structure Theory And Multi Scale Modeling” (FEST-VEK), Moscow, Russia (2013)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The influence of magnetic excitations on the phase stability of metals and steels. Seminar Talk at Institute for Pure and Applied Math, UCLA, University of California, Los Angeles, CA, USA (2012)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Consequences of H-Vacancy Interactions: An Ab Initio Insight. International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (2012)
Palumbo, M.; Fries, S. G.; Hammerschmidt, T.; Körmann, F.; Hickel, T.: SAPIENS thermophysical database for pure elements: DFT and experiments. 18th Symposium on Thermophysical Properties, Boulder, CO, USA (2012)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Advancing ab initio methods to finite temperatures: The opening of new routes in materials design. Seminar Talk at Institute on Quantum Materials Science, Yekaterinburg, Russia (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…