Krüger, T.; Varnik, F.; Raabe, D.: Simulation of a dense suspension of deformable particles using the lattice Boltzmann method. ICMMES 2009, Guangzhou, China (2009)
Varnik, F.: Lattice Boltzmann studies of confined flows at intermediate Reynolds numbers: The role of wall roughness. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Stability and kinetics of droplets: A free energy based lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Gross, M.; Varnik, F.; Raabe, D.: Stability and kinetic of droplets: A free energy based lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad Honnef, Germany (2008)
Varnik, F.: Yield stress discontinuity: A manifest of the glass transition in a sheared glass. 369th Heraeus-Seminar, Interplay of Thermodynamics and Hydrodynamics in Soft Condensed Matter, Bad-Honnef, Germany (2006)
Varnik, F.: Shearing glassy model systems: A test of theoretical predictions on non linear rheology. 6th Liquid Matter Conference, Utrecht, The Nederlands (2005)
Varnik, F.: Confinement effects on the slow dynamics of a simulated supercooled polymer melt. International workshop on dynamics in viscous liquids, München, Germany (2004)
Varnik, F.: Glass Transition in Polymer Films: A Molecular Dynamics Study. International Conference on Computational Physics (CCP), Aachen, Germany (2001)
Varnik, F.: Propriétés statiques et dynamiques des couches minces de polymères. Les Journées de Rencontre Nationale sur les propriétés des verres, Montpellier, France (2001)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.