Lymperakis, L.; Neugebauer, J.: Thermodynamics and adatom kinetics of non-polar GaN surfaces. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale analysis of the 5D configurational space of Grain Boundaries in Aluminum. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.: Nonlinear Elastic Effects in Group III-Nitrides. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Marquardt, O.; Wahn, M.; Lymperakis, L.; Hickel, T.; Neugebauer, J.: Implementation and application of a multi-scale approach to electronic properties of group III-nitride based semiconductor nanostructures. Workshop on Nitride Based Nanostructures, Berlin, Germany (2007)
Lymperakis, L.: Ab-initio based multiscale caclulations of Grain Boundaries in aluminum. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld, Germany (2006)
Lymperakis, L.; Neugebauer, J.: Kinetically stabilized ordering in AlGaN alloys. Institute of Fundamental Technological Research, Polish Academy of Sciences, Colloquium, Warsaw/Poland (2006)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale calculations of low-angle grain boundaries in Aluminum. DPG spring meeting, Dresden, Germany (2006)
Lymperakis, L.: Ab-initio based multiscale calculations of extended defects in condensed matter. Ab initio Description of Iron and Steel (ADIS2006), Ringberg Castle (2006)
Lymperakis, L.; Neugebauer, J.: Electronic properties of non-stoichiometric dislocation cores in GaN. Materials Research Society fall meeting, Boston, MA, USA (2005)
Lymperakis, L.; Neugebauer, J.: The role of strain fields, core structure, and native defects on the electrical activity of dislocations in GaN. The 6th International Conference on Nitride Semiconductors, Bremen (2005)
Lymperakis, L.; Neugebauer, J.: Formation of steps and vicinal surfaces on GaN (0001) surfaces: Implications on surface morphologies and surface roughening. DPG spring meeting, Berlin, Germany (2005)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Limits of Indium Incorporation on In1-xGaxN {0001} III- and N-Polar Surfaces: An Ab Initio Approach. 10th International Conference on Nitride Semiconductors, Washigton DC, USA (2013)
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...