Neugebauer, J.: Collective variable description of crystal anharmonicity. IPAM Workshop II: Collective Variables in Classical Mechanics, Los Angeles, CA, USA (2016)
Neugebauer, J.: Modelling structural materials in extreme environments by ab initio guided multiscale simulations. International Workshop “Theory and Modelling of Materials in Extreme Environment", Abingdon, UK (2016)
Neugebauer, J.: Ab initio thermodynamic description of advanced structural materials: Status and challenges. Workshop “Ab-initio Based Modeling of Advanced Materials”, Yekaterinburg, Russia (2016)
Neugebauer, J.: Stahl: Wie ein alter Werkstoff sich immer wieder neu erfindet und damit Wissenschaft und Wirtschaft beflügelt. 129. Versammlung der Gesellschaft der deutschen Naturforscher und Ärzte, Greifswald, Germany (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Intermartensitic Phase Boundaries in Ni–Mn–Ga Alloys: A Viewpoint from Ab initio Thermodynamics. 5th International Conference on Ferromagnetic Shape Memory Alloys, Sendai, Japan (2016)
Zendegani, A.; Körmann, F.; Hickel, T.; Hallstedt, B.; Neugebauer, J.: Thermodynamic properties of the quaternary Q phase in Al–Cu–Mg–Si: a combined ab-initio, phonon and compound energy formalism approach. International Conference on Advanced Materials Modelling (ICAMM), Rennes, France (2016)
Neugebauer, J.: Ab initio description of defects in materials under extreme conditions. 2016 Joint ICTP-CAS-IAEA School and Workshop on Plasma-Material Interaction in Fusion Devices, Hefei, China (2016)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Development of methodologies to efficiently compute melting properties fully from ab initio. 2nd German-Dutch Workshop on Computational Materials Science, Domburg, The Netherlands (2016)
Neugebauer, J.: Hydrogen embrittlement research at the MPIE (Max-Planck-Institut für Eisenforschung). SNEAC Workshop Environmental Assisted Cracking, Trondheim, Norway (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Phase diagrams in magnetic shape memory alloys: Insights obtained from ab initio thermodynamics. The forty-fifth International Conference on Computer Coupling of Phase Diagrams and Thermochemistry, Awaji Island, Hyogo, Japan (2016)
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.